Chapter 11: Problem 5
Evaluate the following integrals, in which \(a\) and \(b\) are nonzero real constants. (a) \(\int_{0}^{\infty} \frac{2 x^{2}+1}{x^{4}+5 x^{2}+6} d x\). (b) \(\int_{0}^{\infty} \frac{d x}{6 x^{4}+5 x^{2}+1}\). (c) \(\int_{0}^{\infty} \frac{d x}{x^{4}+1}\). (d) \(\int_{0}^{\infty} \frac{\cos x d x}{\left(x^{2}+a^{2}\right)^{2}\left(x^{2}+b^{2}\right)}\). (e) \(\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b^{2}\right)^{2}} d x\). (f) \(\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}\). (g) \(\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}\left(x^{2}+2\right)}\). (h) \(\int_{0}^{\infty} \frac{2 x^{2}-1}{x^{6}+1} d x\). (i) \(\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)^{2}}\). (j) \(\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+4 x+13\right)^{2}}\). (k) \(\int_{0}^{\infty} \frac{x^{3} \sin a x}{x^{6}+1} d x\). (1) \(\int_{0}^{\infty} \frac{x^{2}+1}{x^{2}+4} d x\). (m) \(\int_{-\infty}^{\infty} \frac{x \cos x d x}{x^{2}-2 x+10}\). (n) \(\int_{-\infty}^{\infty} \frac{x \sin x d x}{x^{2}-2 x+10}\). (o) \(\int_{0}^{\infty} \frac{d x}{x^{2}+1}\). (p) \(\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+4\right)^{2}\left(x^{2}+25\right)}\). (q) \(\int_{0}^{\infty} \frac{\cos a x}{x^{2}+b^{2}} d x\). (r) \(\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{2}}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.