Chapter 10: Problem 37
Expand \(\sinh z\) in a Taylor series about the point \(z=i \pi\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 10: Problem 37
Expand \(\sinh z\) in a Taylor series about the point \(z=i \pi\).
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(C\) be the circle \(|z-i|=3\) integrated in the positive sense. Find the value of each of the following integrals. (a) \(\oint_{C} \frac{e^{z}}{z^{2}+\pi^{2}} d z\), (b) \(\oint_{C} \frac{\sinh z}{\left(z^{2}+\pi^{2}\right)^{2}} d z\), (c) \(\oint_{C} \frac{d z}{z^{2}+9}\), (d) \(\oint_{C} \frac{d z}{\left(z^{2}+9\right)^{2}}\), (e) \(\oint_{C} \frac{\cosh z}{\left(z^{2}+\pi^{2}\right)^{3}} d z\) (f) \(\oint_{C} \frac{z^{2}-3 z+4}{z^{2}-4 z+3} d z\).
Find the (unique) Laurent expansion of each of the following functions about the origin for its entire region of analyticity. (a) \(\frac{1}{(z-2)(z-3)} ;\) (b) \(z \cos \left(z^{2}\right)\) (c) \(\frac{1}{z^{2}(1-z)}\); (d) \(\frac{\sinh z-z}{z^{4}}\); (e) \(\frac{1}{(1-z)^{3}}\); (f) \(\frac{1}{z^{2}-1}\); (g) \(\frac{z^{2}-4}{z^{2}-9} ;\) (h) \(\frac{1}{\left(z^{2}-1\right)^{2}}\); (i) \(\frac{z}{z-1}\).
Show that (a) \(\tanh \left(\frac{z}{2}\right)=\frac{\sinh x+i \sin y}{\cosh x+\cos y}\), (b) \(\operatorname{coth}\left(\frac{z}{2}\right)=\frac{\sinh x-i \sin y}{\cosh x-\cos y}\).
Verify the following hyperbolic identities. (a) \(\quad \cosh ^{2} z-\sinh ^{2} z=1\). (b) \(\quad \cosh \left(z_{1}+z_{2}\right)=\cosh z_{1} \cosh z_{2}+\sinh z_{1} \sinh z_{2}\). (c) \(\sinh \left(z_{1}+z_{2}\right)=\sin z_{1} \cosh z_{2}+\cosh z_{1} \sinh z_{2}\). (d) \(\cosh 2 z=\cosh ^{2} z+\sinh ^{2} z, \quad \sinh 2 z=2 \sinh z \cosh z\). (e) \(\tanh \left(z_{1}+z_{2}\right)=\frac{\tanh z_{1}+\tanh z_{2}}{1+\tanh z_{1} \tanh z_{2}}\).
Show that the following functions are entire. (a) \(f(z)=\left\\{\begin{array}{ll}\frac{e^{2 z}-1}{z^{2}}-\frac{2}{z} & \text { for } z \neq 0, \\ 2 & \text { for } z=0 .\end{array}\right.\) (b) \(f(z)=\left\\{\begin{array}{ll}\frac{\sin z}{2} & \text { for } z \neq 0, \\\ 1 & \text { for } z=0 .\end{array}\right.\) (c) \(f(z)=\left\\{\begin{array}{ll}\frac{\cos z}{z^{2}-\pi^{2} / 4} & \text { for } z \neq \pm \pi / 2, \\ -1 / \pi & \text { for } z=\pm \pi / 2 .\end{array}\right.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.