Chapter 10: Problem 33
Let \(C\) be the boundary of a square whose sides lie along the lines \(x=\pm 3\) and \(y=\pm 3 .\) For the positive sense of integration, evaluate each of the following integrals. (a) \(\oint_{C} \frac{e^{-z} d z}{z-i \pi / 2}\), (b) \(\oint_{C} \frac{e^{z} d z}{z\left(z^{2}+10\right)}\), (c) \(\oint_{C} \frac{\cos z d z}{\left(z-\frac{\pi}{4}\right)\left(z^{2}-10\right)}\), (d) \(\oint_{C} \frac{\sinh z d z}{z^{4}}\), (e) \(\oint_{C} \frac{\cosh z d z}{z^{4}}\), (f) \(\oint_{C} \frac{\cos z d z}{z^{3}}\), (g) \(\oint_{C} \frac{\cos z d z}{(z-i \pi / 2)^{2}}\), (h) \(\oint_{C} \frac{e^{z} d z}{(z-i \pi)^{2}}\), (i) \(\oint_{C} \frac{\cos z d z}{z+i \pi}\), (j) \(\oint_{C} \frac{e^{z} d z}{z^{2}-5 z+4}\), (k) \(\oint_{C} \frac{\sinh z d z}{(z-i \pi / 2)^{2}}\), (l) \(\oint_{C} \frac{\cosh z d z}{(z-i \pi / 2)^{2}}\), (m) \(\oint_{C} \frac{\tan z d z}{(z-\alpha)^{2}}, \quad\) for \(-3<\alpha<3\), (n) \(\oint_{C} \frac{z^{2} d z}{(z-2)\left(z^{2}-10\right)}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.