Chapter 10: Problem 22
Let \(f(t)=u(t)+i v(t)\) be a (piecewise) continuous complex-valued function of a real variable \(t\) defined in the interval \(a \leq t \leq b\). Show that if \(F(t)=U(t)+i V(t)\) is a function such that \(d F / d t=f(t)\), then $$\int_{a}^{b} f(t) d t=F(b)-F(a) .$$ This is the fundamental theorem of calculus for complex variables.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.