Chapter 4: Problem 29
What genetic criteria distinguish a case of extranuclear inheritance from (a) a case of Mendelian autosomal inheritance; (b) a case of \(\mathrm{X}\) -linked inheritance?
Chapter 4: Problem 29
What genetic criteria distinguish a case of extranuclear inheritance from (a) a case of Mendelian autosomal inheritance; (b) a case of \(\mathrm{X}\) -linked inheritance?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Dexter and Kerry cattle, animals may be polled (hornless) or horned. The Dexter animals have short legs, whereas the Kerry animals have long legs. When many offspring were obtained from matings between polled Kerrys and horned Dexters, half were found to be polled Dexters and half polled Kerrys. When these two types of \(\mathrm{F}_{1}\) cattle were mated to one another, the following \(\mathrm{P}_{2}\) data were obtained: \(3 / 8\) polled Dexters \(1 / 8\) horned Dexters \(3 / 8\) polled Kerrys \(1 / 8\) horned Kerrys A geneticist was puzzled by these data and interviewed farmers who had bred these cattle for decades. She learned that Kerrys were true-breeding. Dexters, on the other hand, were not true- breeding and never produced as many offspring as Kerrys. Provide a genetic explanation for these observations.
The maternal-effect mutation bicoid (bcd) is recessive. In the absence of the bicoid protein product, embryogenesis is not completed. Consider a cross between a female heterozygous for the bicoid mutation \(\left(b c d^{+} / b c d^{-}\right)\) and a homozygous male \(\left(b c d^{\left.-/ b c d^{-}\right)}\right.\) (a) How is it possible for a male homozygous for the mutation to exist? (b) Predict the outcome (normal vs, failed embryogenesis) in the \(\mathrm{F}_{1}\) and \(\mathrm{F}_{2}\) generations of the cross described.
A geneticist from an alien planet that prohibits genetic research brought with him two true-breeding lines of frogs. One frog line croaks by uttering "rib-it rib-it" and has purple eyes. The other frog line croaks by muttering "knee- deep knee-deep" and has green eyes. He mated the two frog lines, producing \(\mathrm{P}_{1}\) frogs that were all utterers with blue eyes. A large \(\mathrm{F}_{2}\) generation then yielded the following ratios: \(27 / 64\) blue, utterer \(12 / 64\) green, utterer \(9 / 64\) blue, mutterer \(9 / 64\) purple, utterer \(4 / 64\) green, mutterer \(3 / 64\) purple, mutterer (a) How many total gene pairs are involved in the inheritance of both eye color and croaking? (b) Of these, how many control eye color, and how many control croaking? (c) Assign gene symbols for all phenotypes, and indicate the genotypes of the \(P_{1}, F_{1},\) and \(F_{2}\) frogs. (d) After many years, the frog geneticist isolated true-breeding lines of all six \(\mathrm{F}_{2}\) phenotypes. Indicate the \(\mathrm{F}_{1}\) and \(\mathrm{P}_{2}\) phenotypic ratios of a cross between a blue, mutterer and a purple, utterer.
Pigment in the mouse is produced only when the \(C\) allele is pres- ent. Individuals of the ce genotype have no color, If color is present, it may be determined by the \(A\) and \(a\) alleles. AA or Aa results in agouti color, whereas aa results in black coats. (a) What \(\mathrm{F}_{1}\) and \(\mathrm{F}_{2}\) genotypic and phenotypic ratios are obtained from a cross between \(A A C C\) and aace mice? (b) In the three crosses shown here between agouti females whose genotypes were unknown and males of the aacc genotype, what are the genotypes of the female parents for each of the following phenotypic ratios? (1) 8 agouti (2) 9 agouti (3) 4 agouti 8 colorless 10 black \(\quad 5\) black 10 colorless
In this chapter, we focused on many extensions and modifications of Mendelian principles and ratios, In the process, we encountered many opportunities to consider how this information was acquired. Answer the following fundamental questions: (a) How were early geneticists able to ascertain inheritance patterns that did not fit typical Mendelian ratios? (b) How did geneticists determine that inheritance of some phenotypic characteristics involves the interactions of two or more gene pairs? How were they able to determine how many gene pairs were involved? (c) How do we know that specific genes are located on the sexdetermining chromosomes rather than on autosomes? (d) For genes whose expression seems to be tied to the sex of individuals, how do we know whether a gene is X-linked in contrast to exhibiting sex-limited or sex-influenced inheritance? (e) How was extranuclear inheritance discovered?
What do you think about this solution?
We value your feedback to improve our textbook solutions.