Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Three autosomal recessive mutations in yeast, all producing the same phenotype \((m 1, m 2, \text { and } m 3),\) are subjected to complementation analysis, Of the results shown below, which, if any, are alleles of one another? Predict the results of the cross that is not shown-that is, \(m 2 \times m 3\) Cross \(1: \quad m I \times m 2 \longrightarrow P_{1}=\) all wild-type progeny Cross \(2: \quad m I \times m 3 \longrightarrow P_{1}:\) all mutant progeny

Short Answer

Expert verified
Answer: Mutations m1 and m3 are alleles of the same gene. The cross m2 x m3 is predicted to result in all wild-type progeny.

Step by step solution

01

Interpret results of Cross 1

The first cross results in all wild-type progeny. This indicates that \(m1\) and \(m2\) complement each other and are most likely not alleles of the same gene.
02

Interpret results of Cross 2

The second cross results in all mutant progeny. This suggests that \(m1\) and \(m3\) do not complement one another, which means they are alleles of the same gene.
03

Predict results of Cross 3 (\(m 2 \times m 3\))

Since \(m1\) and \(m3\) are alleles of the same gene, and \(m1\) and \(m2\) complement each other, it is likely that \(m2\) and \(m3\) will interact similarly. Therefore, the cross \(m 2 \times m 3\) should result in all wild-type progeny. In conclusion, \(m1\) and \(m3\) are alleles of the same gene, and the cross \(m 2 \times m 3\) should result in all wild-type progeny.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The specification of the anterior-posterior axis in Drosophila embryos is initially controlled by various gene products that are synthesized and stored in the mature egg following oogenesis. Mutations in these genes result in abnormalities of the axis during embryogenesis, illustrating maternal effect. How do such mutations vary from those involved in organelle heredity that illustrate extranuclear inheritance? Devise a set of parallel crosses and expected outcomes involving mutant genes that contrast maternal effect and organelle heredity.

What genetic criteria distinguish a case of extranuclear inheritance from (a) a case of Mendelian autosomal inheritance; (b) a case of \(\mathrm{X}\) -linked inheritance?

The trait of medium-sized leaves in iris is determined by the genetic condition \(P P^{\prime}\). Plants with large leaves are \(P P\), whereas plants with small leaves are \(P^{\prime} P^{\prime} .\) A cross is made between two plants each with medium-sized leaves. If they produce 80 seedlings, what would be the expected phenotypes, and in what numbers would they be expected? What is the term for this allelic relationship?

In this chapter, we focused on many extensions and modifications of Mendelian principles and ratios, In the process, we encountered many opportunities to consider how this information was acquired. Answer the following fundamental questions: (a) How were early geneticists able to ascertain inheritance patterns that did not fit typical Mendelian ratios? (b) How did geneticists determine that inheritance of some phenotypic characteristics involves the interactions of two or more gene pairs? How were they able to determine how many gene pairs were involved? (c) How do we know that specific genes are located on the sexdetermining chromosomes rather than on autosomes? (d) For genes whose expression seems to be tied to the sex of individuals, how do we know whether a gene is X-linked in contrast to exhibiting sex-limited or sex-influenced inheritance? (e) How was extranuclear inheritance discovered?

The creeper gene in chickens causes short and stunted legs (creeper condition) in the heterozygous state (Cc) and lethality in the homozygous state (CC). The genotype \(c c\) produces normal chickens. What ratio is obtained when creeper chickens are Interbred? Is the \(C\) allele behaving dominantly or recessively in causing lethality?

See all solutions

Recommended explanations on Biology Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free