Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In cattle, coats may be solid white, solid black, or black-andwhite spotted. When true-breeding solid whites are mated with true-breeding solid blacks, the \(\mathrm{F}_{1}\), generation consists of all solid white individuals. After many \(\mathrm{F}_{1} \times \mathrm{F}_{1}\) matings, the following ratio was observed in the \(\mathrm{F}_{2}\) generation: \(12 / 16\) solid white \(3 / 16\) black-and-white spotted \(1 / 16\) solid black Rxplain the mode of inheritance governing coat color by determining how many gene pairs are involved and which genotypes yield which phenotypes. Is it possible to isolate a true-breeding strain of black-and-white spotted cattle? If so, what genotype would they have? If not, explain why not.

Short Answer

Expert verified
Answer: The mode of inheritance governing coat color in cattle involves two gene pairs, with AABB being solid white, aabb being solid black, and AAbb, AaBB, or AaBb representing black-and-white spotted individuals. It is not possible to isolate a true-breeding strain of black-and-white spotted cattle due to these heterozygous genotypes.

Step by step solution

01

Identify the ratio of phenotypes

The given ratio in the F2 generation is \(12/16\) solid white, \(3/16\) black-and-white spotted, and \(1/16\) solid black. We can simplify this ratio by dividing each number by the greatest common divisor, which is 1 in this case. Thus, the simplified ratio is 12:3:1.
02

Determine the number of gene pairs involved

The observed ratio in the F2 generation (12:3:1) is very close to the classic dihybrid ratio of 9:3:3:1, which means that two gene pairs are likely involved in determining the coat color. To fit our given ratio into the classic dihybrid pattern, we need to combine some of the categories. Combining the 9:3 and 3:1 ratios, we get the 12:3:1 ratio observed in this problem.
03

Assign genotypes to each phenotype

Let the two gene pairs for coat color be A and B. We know that the F1 generation consists of all solid white individuals which were a result of mating between true-breeding solid white and solid black cattle. Since solid white is dominant, we can assign AABB to solid white individuals, aabb to solid black individuals, and AAbb, AaBB, or AaBb to the spotted phenotype.
04

Determine if you can isolate a true-breeding strain of black-and-white spotted cattle

A true-breeding strain would require homozygous genotypes, meaning that all alleles in the genotype are the same. However, as previously determined, black-and-white spotted cattle have heterozygous genotypes (AAbb, AaBB, or AaBb). Therefore, it is not possible to isolate a true-breeding strain of black-and-white spotted cattle due to the presence of heterozygous genotypes for the coat color gene pairs. In conclusion, the inheritance of coat color in cattle involves two gene pairs, with AABB being solid white, aabb being solid black, and AAbb, AaBB, or AaBb representing black-and-white spotted individuals. It is not possible to isolate a true-breeding strain of black-and-white spotted cattle due to these heterozygous genotypes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In four o'clock plants, many flower colors are observed. In a cross involving two true-breeding strains, one crimson and the other white, all of the \(\mathrm{F}_{1}\) generation were rose color. In the \(\mathrm{F}_{2}\) four new phenotypes appeared along with the \(P_{1}\) and \(F_{1}\) parental colors. The following ratio was obtained: \(1 / 16\) crimson \(4 / 16\) rose \(2 / 16\) orange \(\quad 2 / 16\) pale yellow 1/16 yellow \(\quad 4 / 16\) white \(2 / 16\) magenta Propose an explanation for the inheritance of these flower colors.

The specification of the anterior-posterior axis in Drosophila embryos is initially controlled by various gene products that are synthesized and stored in the mature egg following oogenesis. Mutations in these genes result in abnormalities of the axis during embryogenesis, illustrating maternal effect. How do such mutations vary from those involved in organelle heredity that illustrate extranuclear inheritance? Devise a set of parallel crosses and expected outcomes involving mutant genes that contrast maternal effect and organelle heredity.

In goats, development of the beard is due to a recessive gene. The following cross involving true-breeding eoats was made and carried to the \(\mathrm{F}_{2}\) generation: \(\mathrm{P}_{1}=\) bearded female \(\times\) beardless male \(\mathrm{F}_{1}:\) all bearded males and beardless females \\[ \mathbf{F}_{1} \times \mathbf{F}_{1} \rightarrow\left\\{\begin{array}{l} 1 / 8 \text { beardless males } \\ 3 / 8 \text { bearded males } \\ 3 / 8 \text { beardless females } \\ 1 / 8 \text { bearded females } \end{array}\right. \\] Offer an explanation for the inheritance and expression of this trait, diagramming the cross. Propose one or more crosses to test your hypothesis.

A geneticist from an alien planet that prohibits genetic research brought with him two true-breeding lines of frogs. One frog line croaks by uttering "rib-it rib-it" and has purple eyes. The other frog line croaks by muttering "knee- deep knee-deep" and has green eyes. He mated the two frog lines, producing \(\mathrm{P}_{1}\) frogs that were all utterers with blue eyes. A large \(\mathrm{F}_{2}\) generation then yielded the following ratios: \(27 / 64\) blue, utterer \(12 / 64\) green, utterer \(9 / 64\) blue, mutterer \(9 / 64\) purple, utterer \(4 / 64\) green, mutterer \(3 / 64\) purple, mutterer (a) How many total gene pairs are involved in the inheritance of both eye color and croaking? (b) Of these, how many control eye color, and how many control croaking? (c) Assign gene symbols for all phenotypes, and indicate the genotypes of the \(P_{1}, F_{1},\) and \(F_{2}\) frogs. (d) After many years, the frog geneticist isolated true-breeding lines of all six \(\mathrm{F}_{2}\) phenotypes. Indicate the \(\mathrm{F}_{1}\) and \(\mathrm{P}_{2}\) phenotypic ratios of a cross between a blue, mutterer and a purple, utterer.

Hemophilia is an X-linked recessive mutation In humans that causes delayed blood clotting. What kinds of \(\mathrm{F}_{1}\) and \(\mathrm{F}_{2}\) offspring would be expected from matings between (a) a hemophilic female and a normal male, and (b) a hemophilic male and a normal female? Compare these results to those that would be obtained if the hemophilic gene was autosomal.

See all solutions

Recommended explanations on Biology Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free