Chapter 3: Problem 14
Mendel crossed peas with round, green seeds with peas having wrinkled, yellow seeds. All \(\mathrm{F}_{1}\) plants had seeds that were round and yellow. Predict the results of testcrossing these \(F_{1}\) plants.
Chapter 3: Problem 14
Mendel crossed peas with round, green seeds with peas having wrinkled, yellow seeds. All \(\mathrm{F}_{1}\) plants had seeds that were round and yellow. Predict the results of testcrossing these \(F_{1}\) plants.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider three independently assorting gene pairs, \(A / a, B / b,\) and \(C / c,\) where each demonstrates typical dominance \((A-, B-, C-)\) and recessiveness \((a a, b b, c c) .\) What is the probability of obtaining an offspring that is \(A A B b C c\) from parents that are \(A a B b C C\) and \(A A B b C c ?\)
Why was the garden pea a good choice as an experimental organism in Mendel's work?
Correlate Mendel's four postulates with what is now known about homologous chromosomes, genes, alleles, and the process of meiosis.
In an intra-species cross performed in mustard plants of two different species (Brassicajuncea and Brassica oleracea), a tall plant \((T T)\) was crossed with a dwarf (tt) variety in each of the two species. The members of the \(\mathrm{F}_{1}\) generation were crossed to produce the \(\mathrm{F}_{2}\) generation. Of the \(\mathrm{F}_{2}\) plants, Brassica juncea had 60 tall and 20 dwarf plants, while Brassica oleracea had 100 tall and 20 dwarf plants. Use chi-square analysis to analyze these results.
Mendel crossed peas having round seeds and yellow cotyledons with peas having wrinkled seeds and green cotyledons. All the \(\mathrm{F}_{1}\) plants had round seeds with yellow cotyledons. Diagram this cross through the \(\mathrm{F}_{2}\) generation, using both the Punnett square and forked-line methods.
What do you think about this solution?
We value your feedback to improve our textbook solutions.