Chapter 6: Problem 10
Inversions are said to "suppress crossing over." Is this ter. minology technically correct? If not, restate the description accurately.
Chapter 6: Problem 10
Inversions are said to "suppress crossing over." Is this ter. minology technically correct? If not, restate the description accurately.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhy do human monosomics most often fail to survive prenatal development?
Define these pairs of terms, and distinguish between them. aneuploidy/euploidy monosomy/trisomy Patau syndrome/Edwards syndrome autopolyploidy/allopolyploidy autotetraploid/amphidiploid paracentric inversion/pericentric inversion
A boy with Klinefelter syndrome \((47, \mathrm{XXY})\) is born to a mother who is phenotypically normal and a father who has the X-linked skin condition called anhidrotic ectodermal dysplasia. The mother's skin is completely normal with no signs of the skin abnormality. In contrast, her son has patches of normal skin and patches of abnormal skin. (a) Which parent contributed the abnormal gamete? (b) Using the appropriate genetic terminology, describe the meiotic mistake that occurred. Be sure to indicate in which division the mistake occurred. (c) Using the appropriate genetic terminology, explain the son's skin phenotype.
In this chapter, we focused on chromosomal mutations resulting from a change in number or arrangement of chromosomes. In our discussions, we found many opportunities to consider the methods and reasoning by which much of this information was acquired. From the explanations given in the chapter, what answers would you propose to the following fundamental questions? (a) How do we know that the extra chromosome causing Down syndrome is usually maternal in origin? (b) How do we know that human aneuploidy for each of the 22 autosomes occurs at conception, even though most often human aneuploids do not survive embryonic or fetal development and thus are never observed at birth? (c) How do we know that specific mutant phenotypes are due to changes in chromosome number or structure? (d) How do we know that the mutant Bar-eye phenotype in Drosophila is due to a duplicated gene region rather than to a change in the nucleotide sequence of a gene?
In a human genetic study, a family with five phenotypically normal children was investigated. Two children were "homozy. gous" for a Robertsonian translocation between chromosomes 19 and 20 (they contained two identical copies of the fused chromosome). They have only 44 chromosomes but a complete genetic complement. Three of the children were "heterozygous" for the translocation and contained 45 chromosomes, with one translocated chromosome plus a normal copy of both chromosomes 19 and \(20 .\) Two other pregnancies resulted in stillbirths. It was later discovered that the parents were first cousins. Based on this information, determine the chromosome compositions of the parents. What led to the stillbirths? Why was the discovery that the parents were first cousins a key piece of information in understanding the genetics of this family?
What do you think about this solution?
We value your feedback to improve our textbook solutions.