Chapter 9: Problem 6
What three criteria must a human disorder fulfill to be classified as a hereditary mitochondrial disease?
Chapter 9: Problem 6
What three criteria must a human disorder fulfill to be classified as a hereditary mitochondrial disease?
All the tools & learning materials you need for study success - in one app.
Get started for free(a) In humans the mitochondrial genome encodes a low number of proteins, rRNAs, and tRNAs but imports approximately 1100 proteins encoded by the nuclear genome. Yet, with such a small proportion from the mitochondrial genome encoding proteins and RNAs, a disproportionately high number of genetic disorders due to mtDNA mutations have been identified (Bigger, B. et al. 1999 ). What inheritance pattern would you expect in a three-generation pedigree in which the grandfather expresses the initial mtDNA defect? What inheritance pattern would you expect in a three-generation pedigree in which the grandmother expresses the initial mtDNA defect? (b) Considering the description in part (a) above, how would your pedigrees change if you knew that the mutation that caused the mitochondrial defect was recessive and located in the nuclear genome, was successfully transported into mitochondria, and negated a physiologically important mitochondrial function?
The maternal-effect mutation bicoid ( \(b c d\) ) is recessive. In the absence of the bicoid protein product, embryogenesis is not completed. Consider a cross between a female heterozygous for the bicoid alleles \(\left(b c d^{+} / b c d^{-}\right)\) and a male homozygous for the mutation \(\left(b c d^{-} / b c d^{-}\right)\) (a) How is it possible for a male homozygous for the mutation to exist?. (b) Predict the outcome (normal vs. failed embryogenesis) in the \(\mathrm{F}_{1}\) and \(\mathrm{F}_{2}\) generations of the cross described.
Why is the rate of mutation in mitochondrial DNA higher than that in nuclear DNA but the incidence of genetic diseases caused by mutations in mitochondrial DNA relatively low?
Mutations in mitochondrial DNA appear to be responsible for a number of neurological disorders, including myoclonic epilepsy and ragged-red fiber disease, Leber's hereditary optic neuropathy, and Kearns-Sayre syndrome. In each case, the disease phenotype is expressed when the ratio of mutant to wild-type mitochondria exceeds a threshold peculiar to each disease, but usually in the 60 to 95 percent range. (a) Given that these are debilitating conditions, why has no cure been developed? Can you suggest a general approach that might be used to treat, or perhaps even cure, these disorders? (b) Compared with the vast number of mitochondria in an embryo, the number of mitochondria in an ovum is relatively small. Might such an ooplasmic mitochondrial bottleneck present an opportunity for therapy or cure? Explain.
Streptomycin resistance in Chlamydomonas may result from a mutation in either a chloroplast gene or a nuclear gene. What phenotypic results would occur in a cross between a member of an \(m t^{+}\) strain resistant in both genes and a member of a strain sensitive to the antibiotic? What results would occur in the reciprocal cross?
What do you think about this solution?
We value your feedback to improve our textbook solutions.