Chapter 3: Problem 27
Two true-breeding pea plants were crossed. One parent is round, terminal, violet, constricted, while the other expresses the respective contrasting phenotypes of wrinkled, axial, white, full. The four pairs of contrasting traits are controlled by four genes, each located on a separate chromosome. In the \(\mathrm{F}_{1}\) only round, axial, violet, and full were expressed. In the \(\mathrm{F}_{2},\) all possible combinations of these traits were expressed in ratios consistent with Mendelian inheritance. (a) What conclusion about the inheritance of the traits can be drawn based on the \(\mathrm{F}_{1}\) results? (b) In the \(\mathrm{F}_{2}\) results, which phenotype appeared most frequently? Write a mathematical expression that predicts the probability of occurrence of this phenotype. (c) Which \(\mathrm{F}_{2}\) phenotype is expected to occur least frequently? Write a mathematical expression that predicts this probability. (d) In the \(F_{2}\) generation, how often is either of the \(P_{1}\) phenotypes likely to occur? (e) If the \(F_{1}\) plants were testcrossed, how many different phenotypes would be produced? How does this number compare with the number of different phenotypes in the \(\mathrm{F}_{2}\) generation just discussed?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.