Chapter 24: Problem 7
Much effort has been expended to understand genetic involvement in brain function in Drosophila. Why might this research be important in understanding the functioning of the human brain?
Chapter 24: Problem 7
Much effort has been expended to understand genetic involvement in brain function in Drosophila. Why might this research be important in understanding the functioning of the human brain?
All the tools & learning materials you need for study success - in one app.
Get started for freeAlthough not discussed in this chapter, \(C\), elegans is a model system whose life cycle makes it an excellent choice for the genetic dissection of many biological processes. C. elegans has two natural sexes: hermaphrodite and male. The hermaphrodite is essentially a female that can generate sperm as well as oocytes, so reproduction can occur by hermaphrodite selffertilization or hermaphrodite-male mating. In the context of studying mutations in the nervous system, what is the advantage of hermaphrodite self-fertilization with respect to the identification of recessive mutations and the propagation of mutant strains?
There are at least eight known progressive neuronal dysfunction diseases in humans that are caused by abnormal numbers of CAG repeats within the coding regions of specific genes. Genes carrying such mutations are typically of the gain-offunction class and often share a common mechanism of progressive pathogenesis. Why are such genes "gain-of-function"? Speculate on why such diseases are probably caused by a common mechanism of pathogenesis.
Fragile-X syndrome is characterized by intellectual deficits, some dysmorphia, and hyperactivity. It is caused by abnormal expansion of a (CGG) \(_{n}\) repeat in the \(5^{\prime}\) -untranslated region of the \(F M R 1\) gene and as such results in hypermethylation of CpGs. Considering the role of the \(F M R 1\) gene in expression of fragile-X syndrome, what is the relationship between hypermethylation and \(F M R 1\) gene expression?
Describe the use of single-nucleotide polymorphisms (SNPs) in the study of genetic causes of schizophrenia.
Various approaches have been applied to study the genetics of problem and pathological gambling (PG), and within-family vulnerability has been well documented. However, family studies, while showing clusters within blood relatives, cannot separate genetic from environmental influences. Eisen (2001) applied "twin studies" using 3359 twin pairs from the Vietnam-era Twin Registry and found that a substantial portion of the variance associated with \(\mathrm{PG}\) can be attributed to inherited factors. How might twin studies be used to distinguish environmental from genetic factors in complex behavioral traits such as PG?
What do you think about this solution?
We value your feedback to improve our textbook solutions.