Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The mean and variance of plant height of two highly inbred strains \(\left(P_{1} \text { and } P_{2}\right)\) and their progeny \(\left(F_{1} \text { and } F_{2}\right)\) are shown here. $$\begin{array}{ccc}\text { Strain } & \text { Mean (cm) } & \text { Variance } \\\\\mathrm{P}_{1} & 34.2 & 4.2 \\\\\mathrm{P}_{2} & 55.3 & 3.8 \\\\\mathrm{F}_{1} & 44.2 & 5.6 \\\\\mathrm{F}_{2} & 46.3 & 10.3\end{array}$$ Calculate the broad-sense heritability \(\left(H^{2}\right)\) of plant height in this species.

Short Answer

Expert verified
Answer: The broad-sense heritability (H^2) of plant height in this species is approximately 0.365 or 36.5%.

Step by step solution

01

Calculate the Average Environmental Variance

The environmental variance (\(V_E\)) can be calculated as the mean of the variances of the two inbred parent strains (\(P_1\) and \(P_2\)): $$V_{E}=\frac{4.2+3.8}{2}=4.0$$
02

Calculate the Phenotypic Variance

We will use the formula to calculate the phenotypic variance (\(V_P\)) as the difference between the variance of the \(F_2\) progeny and the environmental variance (\(V_E\)): $$V_{P}=V_{F_2}-V_{E}=10.3-4.0=6.3$$
03

Calculate the Genetic Variance

Now, to calculate the genetic variance (\(V_G\)), we use the following formula: $$V_{G}=V_{P}-V_{E}=6.3-4.0=2.3$$
04

Calculate the Broad-sense Heritability

Finally, to calculate the broad-sense heritability \((H^2)\), we divide the genetic variance (\(V_G\)) by the phenotypic variance (\(V_P\)): $$H^{2}=\frac{V_{G}}{V_{P}}=\frac{2.3}{6.3}\approx0.365$$ Thus, the broad-sense heritability \(H^2\) of plant height in this species is approximately 0.365 or 36.5%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Erma and Harvey were a compatible barnyard pair, but a curious sight. Harvey's tail was only \(6 \mathrm{cm}\) long, while Erma's was \(30 \mathrm{cm} .\) Their \(\mathrm{F}_{1}\) piglet offspring all grew tails that were \(18 \mathrm{cm}\) When inbred, an \(\mathrm{F}_{2}\) generation resulted in many piglets (Erma and Harvey's grandpigs), whose tails ranged in \(4-\mathrm{cm}\) intervals from 6 to \(30 \mathrm{cm}(6,10,14,18,22,26, \text { and } 30) .\) Most had \(18-\mathrm{cm}\) tails, while \(1 / 64\) had \(6-\mathrm{cm}\) tails and \(1 / 64\) had \(30-\mathrm{cm}\) tails. (a) Explain how these tail lengths were inherited by describing the mode of inheritance, indicating how many gene pairs were at work, and designating the genotypes of Harvey, Erma, and their 18 -cm-tail offspring. (b) If one of the \(18-\mathrm{cm} \mathrm{F}_{1}\) pigs is mated with one of the \(6-\mathrm{cm}\) \(\mathrm{F}_{2}\) pigs, what phenotypic ratio will be predicted if many offspring resulted? Diagram the cross.

In this chapter, we focused on a mode of inheritance referred to as quantitative genetics, as well as many of the statistical parameters utilized to study quantitative traits. Along the way, we found opportunities to consider the methods and reasoning by which geneticists acquired much of their understanding of quantitative genetics. From the explanations given in the chapter, what answers would you propose to the following fundamental questions: (a) How do we know that threshold traits are actually polygenic even though they may have as few as two discrete phenotypic classes? (b) How can we ascertain the number of polygenes involved in the inheritance of a quantitative trait?

Describe the value of using twins in the study of questions relating to the relative impact of heredity versus environment.

Two different crosses were set up between carrots (Daucus carota \()\) of different colors and carotenoid content (Santos, Carlos A. F. and Simon, Philipp W. 2002. Horticultura Brasileira 20). Analyses of the \(\mathrm{F}_{2}\) generations showed that four loci are associated with the \(\alpha\) carotene content of carrots, with a broad-sense heritability of \(90 \% .\) How many distinct phenotypic categories and genotypes would be seen in each \(\mathrm{F}_{2}\) generation, and what does a broad-sense heritability of \(90 \%\) mean for carrot horticulture?

Corn plants from a test plot are measured, and the distribution of heights at \(10-\mathrm{cm}\) intervals is recorded in the following table: $$\begin{array}{cc}\text { Height }(\mathrm{cm}) & \text { Plants (no.) } \\\100 & 20 \\\110 & 60 \\\120 & 90 \\\130 & 130 \\\140 & 180 \\\150 & 120 \\\160 & 70 \\\170 & 50 \\\180 & 40\end{array}$$ Calculate (a) the mean height, (b) the variance, (c) the standard deviation, and (d) the standard error of the mean. Plot a rough graph of plant height against frequency. Do the values represent a normal distribution? Based on your calculations, how would you assess the variation within this population?

See all solutions

Recommended explanations on Biology Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free