Chapter 21: Problem 9
What is noncoding RNA? What is its function?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 21: Problem 9
What is noncoding RNA? What is its function?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeCompare and contrast whole-genome shotgun sequencing to a map-based cloning approach.
In this chapter, we focused on the analysis of genomes, transcriptomes, and proteomes and considered important applications and findings from these endeavors. At the same time, we found many opportunities to consider the methods and reasoning by which much of this information was acquired. From the explanations given in the chapter, what answers would you propose to the following fundamental questions: (a) How do we know which contigs are part of the same chromosome? (b) How do we know if a genomic DNA sequence contains a protein-coding gene? (c) What evidence supports the concept that humans share substantial sequence similarities and gene functional similarities with model organisms? (d) How can proteomics identify differences between the number of protein- coding genes predicted for a genome and the number of proteins expressed by a genome? (e) What evidence indicates that gene families result from gene duplication events? (f) How have microarrays demonstrated that, although all cells of an organism have the same genome, some genes are expressed in almost all cells, whereas other genes show celland tissue-specific expression?
Annotations of the human genome have shown that genes are not randomly distributed, but form clusters with gene "deserts" in between. These "deserts" correspond to the dark bands on G-banded chromosomes. Comparisons between the human transcriptome map and the genome sequence show that highly expressed genes are also clustered together. In terms of genome organization, how is this an advantage?
Whole Exome Sequencing (WES) is becoming a procedure to help physicians identify the cause of a genetic condition that has defied diagnosis by traditional means. The implication here is that exons in the nuclear genome are sequenced in the hopes that, by comparison with the genomes of nonaffected individuals, a diagnosis might be revealed. (a) What are the strengths and weaknesses of this approach? (b) If you were ordering WES for a patient, would you also include an analysis of the patient's mitochondrial genome?
Through the Human Genome Project (HGP), a relatively accurate human genome sequence was published in 2003 from combined samples from different individuals. It serves as a reference for a haploid genome. Recently, genomes of a number of individuals have been sequenced under the auspices of the Personal Genome Project (PGP). How do results from the PGP differ from those of the HGP?
What do you think about this solution?
We value your feedback to improve our textbook solutions.