Chapter 21: Problem 18
What are gene microarrays? How are microarrays used?
Chapter 21: Problem 18
What are gene microarrays? How are microarrays used?
All the tools & learning materials you need for study success - in one app.
Get started for freeHomology can be defined as the presence of common structures because of shared ancestry. Homology can involve genes, proteins, or anatomical structures. As a result of "descent with modification," many homologous structures have adapted different purposes. (a) List three anatomical structures in vertebrates that are homologous but have different functions. (b) Is it likely that homologous proteins from different species have the same or similar functions? Explain. (c) Under what circumstances might one expect proteins of similar function to not share homology? Would you expect such proteins to be homologous at the level of DNA sequences?
Intron frequency varies considerably among eukaryotes. Provide a general comparison of intron frequencies in yeast and humans. What about intron size?
Archaea (formerly known as archaebacteria) is one of the three major divisions of living organisms; the other two are eubacteria and eukaryotes. Nanoarchaeum equitans is in the Archaea domain and has one of the smallest genomes known, about 0.5 Mb. How can an organism complete its life cycle with so little genetic material?
In this chapter, we focused on the analysis of genomes, transcriptomes, and proteomes and considered important applications and findings from these endeavors. At the same time, we found many opportunities to consider the methods and reasoning by which much of this information was acquired. From the explanations given in the chapter, what answers would you propose to the following fundamental questions: (a) How do we know which contigs are part of the same chromosome? (b) How do we know if a genomic DNA sequence contains a protein-coding gene? (c) What evidence supports the concept that humans share substantial sequence similarities and gene functional similarities with model organisms? (d) How can proteomics identify differences between the number of protein- coding genes predicted for a genome and the number of proteins expressed by a genome? (e) What evidence indicates that gene families result from gene duplication events? (f) How have microarrays demonstrated that, although all cells of an organism have the same genome, some genes are expressed in almost all cells, whereas other genes show celland tissue-specific expression?
Genomic sequencing has opened the door to numerous studies that help us understand the evolutionary forces shaping the genetic makeup of organisms. Using databases containing the sequences of 25 genomes, scientists (Kreil, D.P. and Ouzounis, C.A., Nucl. Acids Res. 29: \(1608-1615,2001\) ) examined the relationship between GC content and global amino acid composition. They found that it is possible to identify thermophilic species on the basis of their amino acid composition alone, which suggests that evolution in a hot environment selects for a certain whole organism amino acid composition. In what way might evolution in extreme environments influence genome and amino acid composition? How might evolution in extreme environments influence the interpretation of genome sequence data?
What do you think about this solution?
We value your feedback to improve our textbook solutions.