Chapter 18: Problem 10
How can you determine whether a particular gene is being transcribed in different cell types?
Chapter 18: Problem 10
How can you determine whether a particular gene is being transcribed in different cell types?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn this chapter, we have focused on large-scale as well as the inter- and intracellular events that take place during embryogenesis and the formation of adult structures. In particular, we discussed how the adult body plan is laid down by a cascade of gene expression, and the role of cell-cell communication in development. Based on your knowledge of these topics, answer several fundamental questions: (a) How do we know how many genes control development in an organism like Drosophila? (b) What experimental evidence demonstrates that molecular gradients in the egg control development? (c) How did we discover that selector genes specify which adult structures will be formed by body segments? (d) How did we learn about the levels of gene regulation involved in vulval development in \(C .\) elegans? (e) How do we know that eye formation in all animals is controlled by a binary switch gene?
Distinguish between the syncytial blastoderm stage and the cellular blastoderm stage in Drosophila embryogenesis.
The floral homeotic genes of Arabidopsis belong to the MADSbox gene family, while in Drosophila, homeotic genes belong to the homeobox gene family. In both Arabidopsis and Drosophila, members of the Polycomb gene family control expression of these divergent homeotic genes. How do Polycomb genes control expression of two very different sets of homeotic genes?
In Arabidopsis, flower development is controlled by sets of homeotic genes. How many classes of these genes are there, and what structures are formed by their individual and combined expression?
The identification and characterization of genes that control sex determination has been a focus of investigators working with \(C .\) elegans. As with Drosophila, sex in this organism is determined by the ratio of \(X\) chromosomes to sets of autosomes. A diploid wild-type male has one \(X\) chromosome and a diploid wild-type hermaphrodite has two X chromosomes. Many different mutations have been identified that affect sex determination. Loss- of-function mutations in a gene called her-1 cause an XO nematode to develop into a hermaphrodite and have no effect on \(\mathrm{XX}\) development. (That is, \(\mathrm{XX}\) nematodes are normal hermaphrodites.) In contrast, loss- offunction mutations in a gene called tra-I cause an XX nematode to develop into a male. Deduce the roles of these genes in wild-type sex determination from this information.
What do you think about this solution?
We value your feedback to improve our textbook solutions.