Chapter 16: Problem 12
Describe the role of attenuation in the regulation of tryptophan biosynthesis.
Chapter 16: Problem 12
Describe the role of attenuation in the regulation of tryptophan biosynthesis.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe SOS repair genes in \(E\). coli (discussed in Chapter 15 ) are negatively regulated by the lexA gene product, called the LexA (a) Describe two different mutations that would result in a \(u v r A\) constitutive phenotype. Indicate the actual genotypes involved. (b) Outline a series of genetic experiments that would use partial diploid strains to determine which of the two possible mutations you have isolated.
Keeping in mind the life cycle of bacteriophages discussed earlier in the text (see Chapter 6 ), consider the following problem: During the reproductive cycle of a temperate bacteriophage, the viral DNA inserts into the bacterial chromosome where the resultant prophage behaves much like a Trojan horse. It can remain quiescent, or it can become lytic and initiate a burst of progeny viruses. Several operons maintain the prophage state by interacting with a repressor that keeps the lytic cycle in check. Insults (ultraviolet light, for example) to the bacterial cell lead to a partial breakdown of the repressor, which in turn causes the production of enzymes involved in the lytic cycle. As stated in this simple form, would you consider this system of regulation to be operating under positive or negative control?
In this chapter, we focused on the regulation of gene expression in prokaryotes. Along the way, we found many opportunities to consider the methods and reasoning by which much of this information was acquired. From the explanations given in the chapter, what answers would you propose to the following fundamental questions? (a) How do we know that bacteria regulate the expression of certain genes in response to the environment? (b) What evidence established that lactose serves as the inducer of a gene whose product is related to lactose metabolism? (c) What led researchers to conclude that a repressor molecule regulates the lac operon? (d) How do we know that the lac repressor is a protein? (e) How do we know that the trp operon is a repressible con- trol system, in contrast to the lac operon, which is an inducible control system?
Contrast the role of the repressor in an inducible system and in a repressible system.
Describe the experimental rationale that allowed the lac repressor to be isolated.
What do you think about this solution?
We value your feedback to improve our textbook solutions.