Chapter 11: Problem 3
Unlike prokaryotes, why do eukaryotes need multiple replication origins?
Chapter 11: Problem 3
Unlike prokaryotes, why do eukaryotes need multiple replication origins?
All the tools & learning materials you need for study success - in one app.
Get started for freeDistinguish between (a) unidirectional and bidirectional synthesis, and (b) continuous and discontinuous synthesis of DNA.
While many commonly used antibiotics interfere with protein synthesis or cell wall formation, clorobiocin, one of several antibiotics in the aminocoumarin class, inhibits the activity of bacterial DNA gyrase. Similar drugs have been tested as treatments for human cancer. How might such drugs be effective against bacteria as well as cancer?
List the proteins that unwind DNA during in vivo DNA synthesis. How do they function?
DNA polymerases in all organisms add only \(5^{\prime}\) nucleotides to the \(3^{\prime}\) end of a growing DNA strand, never to the \(5^{\prime}\) end. One possible reason for this is the fact that most DNA polymerases have a proofreading function that would not be energetically possible if DNA synthesis occurred in the \(3^{\prime}\) to \(5^{\prime}\) direction. (a) Sketch the reaction that DNA polymerase would have to catalyze if DNA synthesis occurred in the \(3^{\prime}\) to \(5^{\prime}\) direction. (b) Consider the information in your sketch and speculate as to why proofreading would be problematic.
Prokaryotic Okazaki fragments are in the range of 1200 nucleotides, while eukaryotic fragments are much shorter, more in the range of \(100-150\) nucleotides. Balakrishnan and Bambara (2013) suggest that the shorter length of Okazaki fragments is determined by nucleosome periodicity. Design an experiment to determine whether or not the length of Okazaki fragments in eukaryotes is dependent on nucleosomes being present on \(\mathrm{J}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.