Chapter 11: Problem 17
What would be the impact of the loss of processivity on DNA Pol III?
Chapter 11: Problem 17
What would be the impact of the loss of processivity on DNA Pol III?
All the tools & learning materials you need for study success - in one app.
Get started for freeMany of the gene products involved in DNA synthesis were initially defined by studying mutant \(E .\) coli strains that could not synthesize DNA. (a) The \(d n a E\) gene encodes the a subunit of DNA polymerase III. What effect is expected from a mutation in this gene? How could the mutant strain be maintained? (b) The \(d n a Q\) gene encodes the \(\varepsilon\) subunit of DNA polymerase. What effect is expected from a mutation in this gene?
In this chapter, we focused on how DNA is replicated and synthesized. We also discussed recombination at the DNA level and the phenomenon of gene conversion. Along the way, we encountered many opportunities to consider how this information was acquired. On the basis of these discussions, what answers would you propose to the following fundamental questions? (a) What is the experimental basis for concluding that DNA replicates semiconservatively in both prokaryotes and eukaryotes? (b) How was it demonstrated that DNA synthesis occurs under the direction of DNA polymerase III and not polymerase I? (c) How do we know that in vivo DNA synthesis occurs in the \(5^{\prime}\) to \(3^{\prime}\) direction? (d) How do we know that DNA synthesis is discontinuous on one of the two template strands? (e) What observations reveal that a "telomere problem" exists during eukaryotic DNA replication, and how did we learn of the solution to this problem?
DNA polymerases in all organisms add only \(5^{\prime}\) nucleotides to the \(3^{\prime}\) end of a growing DNA strand, never to the \(5^{\prime}\) end. One possible reason for this is the fact that most DNA polymerases have a proofreading function that would not be energetically possible if DNA synthesis occurred in the \(3^{\prime}\) to \(5^{\prime}\) direction. (a) Sketch the reaction that DNA polymerase would have to catalyze if DNA synthesis occurred in the \(3^{\prime}\) to \(5^{\prime}\) direction. (b) Consider the information in your sketch and speculate as to why proofreading would be problematic.
Reiji and Tuneko Okazaki conducted a now classic experiment in 1968 in which they discovered a population of short fragments synthesized during DNA replication. They introduced a short pulse of \(^{3} \mathrm{H}\) -thymidine into a culture of \(E .\) coli and extracted DNA from the cells at various intervals. In analyzing the DNA after centrifugation in denaturing gradients, they noticed that as the interval between the time of \(^{3} \mathrm{H}\) -thymidine introduction and the time of centrifugation increased, the proportion of short strands decreased and more labeled DNA was found in larger strands. What would account for this observation?
Describe the role of \(^{15} \mathrm{N}\) in the Meselson-Stahl experiment.
What do you think about this solution?
We value your feedback to improve our textbook solutions.